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We introduce a neural-network architecture in which analog-valued neurons compete through a con-
straint on a sum of neuron outputs within localized clusters. Local competition is useful in feature-
extraction and pattern-classification applications. We show that with continuous-time updating, these
networks converge only to fixed points, while with discrete-time, parallel updating, they converge to ei-
ther fixed points or period-two limit cycles. We derive a stability criterion guaranteeing that discrete-
time networks converge only to fixed points when their cluster gains, which are related to the slopes of
the neuron input-output transfer functions, are sufficiently small. Numerical tests are presented showing
that image-processing networks incorporating local competition operate reliably and in agreement with
the stability criterion. We also describe a simple competitive analog electronic circuit that demonstrates

that these networks are easily implementable.

PACS number(s): 87.10.+e¢, 06.50.Mk, 64.60.Cn

I. INTRODUCTION

The relationship between the architecture of a neural
network and its computational abilities is still poorly un-
derstood. Now that the properties of fully connected as-
sociative memories are well established [1-3], there is a
trend toward studying network architectures with novel
neuron interactions with the hope that they will exhibit
new computational abilities. In these networks, neurons
may communicate only with neurons in a layer [4,5], a
cluster [6,7], or a restricted range [8—10], and the com-
munication may involve inhibition [11], competition
[12-17] or transmission delays [18,19]. The advantage in
computational abilities may arise because the neuron in-
teractions reflect the underlying structure of the problem
being solved. Thus, for example, two-dimensional
restricted-range interactions are useful for image process-
ing [8-10], while transmission delays enable storage and
retrieval of temporal pattern sequences [18,19].

In this paper, we introduce a network architecture in
which analog-valued neurons interact not only through
synaptic interconnections but also through a competitive
mechanism. These competitive analog networks are re-
lated to the standard analog networks that have been
studied previously [20-28]. A comparison of standard
and competitive analog networks is made in Fig. 1. As
indicated in the figure, neurons in both network architec-
tures have analog input-output transfer functions and
communicate through synaptic interconnections.
Benefits of analog processing include discrete-time, paral-
lel updating of neurons without oscillation [22-25, 29]
and improved network performance through suppression
of spurious attractors [25—-27]. The important difference
is that neurons in competitive analog networks are
grouped into localized clusters, within which they com-
pete through the constraint that their outputs sum to a
constant at all times. Competition makes the output of a
neuron depend on the inputs of @/l the neurons in its clus-
ter, rather than just on its own input. As a result, clus-
ters of neurons in competitive networks are capable of
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performing more complicated calculations—including
the winner-take-all function, or more generally, the k-
winner function—than are possible in standard analog
networks.

The computational abilities arising from competition
are especially useful for solving feature-extraction and
pattern-classification problems. In these applications,
each neuron in a cluster represents one feature or pattern,
and competition among them determines which features
or patterns are present. Localized competitive interac-
tions have been used to detect elementary image features
in image-processing networks such as the neocognitron

FIG. 1.

Comparison of standard and competitive analog
neural networks. Circles denote neurons, lines denote sym-
metric neuron interconnections. (a) Schematic diagram of a
standard analog network of ten neurons. Nonlinear input-
output transfer function F;(z) of neuron i/ and interconnection
Ji; between neurons i and j are shown. (b) Same network with
competitive interactions, denoted by dashed ellipses, among
clusters of neurons. The ten neurons are divided into three
competitive clusters containing two, three, and five neurons.
Nonlinear input-output transfer function F;(z) of neuron a in
cluster i and interconnection J,»’}” between neuron a in cluster
and neuron b in cluster j are shown. Competition is enforced by
requiring neuron outputs in cluster i to sum to a constant R;.
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[30], and competition appears in other networks that
classify patterns, learn regularities in inputs, and perform
vector quantization [12—15]. More recently, Potts spins
[31]—Q-state generalizations of Ising spins whose state is
determined using a competitive rule—have been used to
endow associative memories [32-35] and perceptrons
[36,37] with localized feature-extracting abilities. The
competitive networks we study here are closely related
to, but considerably more general than, networks of Potts
spins.

The particular competitive mechanism we study,
which constrains the sum of neuron outputs in a cluster,
has several attractive features. It requires only one con-
nection for each neuron in a cluster; it is free of the sta-
bility problems often associated with competition [38];
and it can be implemented simply in a variety of physical
systems by exploiting conservation laws [39-42]. Other
competitive mechanisms involving all-to-all inhibitory in-
terconnections [38,43], auxiliary neurons [38,43], or mul-
tineuron interactions [32] can be more cumbersome to
implement.

This paper is organized as follows. In Sec. II, we show
how to implement competition in clusters of analog neu-
rons and describe a simple competitive electronic circuit
we have built. Section III discusses how competitive
clusters are connected to form networks and how these
networks are related to networks of Potts spins. In Sec.
IV, we show that, with continuous-time updating, com-
petitive networks with symmetric interconnections con-
verge only to fixed points, while with discrete-time, paral-
lel updating, they converge to either fixed points or
period-two limit cycles. We show furthermore that the
limit cycles can be eliminated from discrete-time,
parallel-update networks by reducing the slope of the
neuron transfer functions sufficiently [22-25]. We then
briefly discuss in Sec. V how local competition can be
used to build two-dimensional feature-classifying net-
works for image processing. In the following paper (Ref.
[44], hereinafter referred to as II), we apply competitive
networks to the problem of associative memory. A sum-
mary of results appears in Sec. VI.

II. COMPETITIVE CLUSTERS

In this section, we describe how the neuron outputs in
a single cluster of competing neurons are determined
from the neuron inputs at one instant of time in the
continuous-time case and during one time-step in the
discrete-time case. (We will describe the dynamics of net-
works of clusters of competing neurons in Sec. III.) In
Sec. IT A, we show that competition can be implemented
among a group of neurons by constraining the sum of
their outputs to equal a constant and give examples of
analog winner-take-all and analog k-winner clusters. In
Sec. IIB, we present an electronic circuit in which
Kirchoff’s current law implements this competitive mech-
anism.

A. Competition among a group of neurons

In the networks we study, neurons are grouped into
clusters of two or more [See Fig. 1(b)]. We concentrate
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here on a single cluster i. The cluster contains Q; neu-
rons labeled by a, a=1, ..., Q;, each of which is charac-
terized by an input-output transfer function F,,(z) that
may be different for each neuron. All Q; neurons are up-
dated simultaneously according to a set of Q; equations
that map real-valued neuron inputs A;, onto real-valued
neuron outputs x;,. These equations may be either the
continuous-time differential equations

dx;, (1)

—d—t——=-—x,-a(t)+Fia(hia(t)+Bi(t)) , a=1,...,0;,
(1a)

or the discrete-time, parallel-update equations

X (t+1)=F,(h,(t)+B;(t)), a=1,...,0; . (1b)

These equations are similar to the update equations of
standard analog networks [20-28]. The important
difference is that, in addition to their inputs 4;,, neurons
also experience a time-dependent bias B;(¢) that is the
same for each neuron in a cluster. The bias B;(¢) is
determined implicitly at time ¢ by the requirement that
the outputs of all neurons in cluster i sum to a constant
R; at the same time ¢ in the continuous-time case,

9
S x,()=R, , (2a)

a=1
and at the next time step ¢ +1 in the discrete-time case,
o
> x,(t+1)=R; . (2b)

a=1

We will refer to Egs. (2) as the competitive constraint and
to groups of neurons obeying Egs. (1) and (2) as competi-
tive clusters.

The competitive constraint distinguishes the networks
considered here from other analog neural networks
[20-28]. It makes the output x;,(¢+1) of neuron a de-
pend not only on its input A, (¢) but also on the inputs
hy(t), b#a, of the other neurons in cluster i. In doing
so, it constrains the Q; neuron outputs in cluster i to a
(Q; —1)-dimensional space. (Thus a cluster of Q; =2 neu-
rons is equivalent to a standard analog neuron, because
its two neuron outputs, which are related by
x;;=R; —x;,, lie in a one-dimensional space.) It is some-
times useful to think of the quantity R; as a limited
resource for which the neurons in cluster i compete.
While it is possible to set R; equal to zero through the
transformation

9
Fi,(z2)>F;,(z2)—R;, , 3 R;;=R;, 3)

a=1

we will continue to allow it to be nonzero, since in
hardware implementations its value may not be adjust-
able.

The transfer functions F;,(z) determine how the neu-
rons in cluster i compete for the quantity R;. Three re-
strictions are sufficient to ensure that the competitive
constraint (2) has a single, unique solution for the bias
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B;(t): (i) all F;,(z) in a cluster must be continuous; (ii) all
F,(z) in a cluster must either increase or decrease mono-
tonically (without loss of generality we assume that all
F,,(z) increase monotonically); and (iii) for all possible
values of the neuron inputs h;,, R; must lie within the
range of the function
Qi
Si(z)= 3 Fylh,+z), 4)

a=1

which, if (i) and (ii) are satisfied, is a continuous, mono-
tonically increasing function over all real numbers z. In
addition, to ensure boundedness of the solutions to Egs.
(1), all F,,(z) in a cluster must asymptotically increase
less than linearly either for large negative values of their
arguments, for large positive values of their arguments,
or for both (see Sec. IV). These requirements are very
general and are easily met by transfer functions that lead
to useful competitive behavior.

As an example of competition, consider a cluster i that
uses the discrete-time update equation (1b) to compute an
analog winner-take-all function of its inputs, meaning
that the neuron with the largest input has the largest out-
put while the other neuron outputs are suppressed. Sup-
pose that R, =1, and suppose that each neuron a in the
cluster has the same transfer function

F(z)=exp(yz), a=1,...,0;, (5)

where the parameter y, the neuron gain, controls the
transfer function slope. This transfer function is a natu-
ral choice in that it arises in the statistical-mechanical
treatment of the winner-take-all problem [45]. It is also
similar in form to the threshold-linear functions used in
the neocognitron [30] and in other networks with com-
petitive or inhibitory behavior [11]. For this transfer
function, the bias B;(t) can be expressed explicitly in
terms of the neuron inputs h,(z), so that the update
equation (1b) reads [45-47]

exp[yhi(1)]
Q; ’

iexp[yh,-b(t)]
b=1

X (t+1)= a=1,...,Q;. (6

Now consider how the neuron outputs x;,(z+1) vary
with ¥ in the case that neuron 1 has the largest input
h;,(2) at time ¢. In the limit ¥ — o of very steep transfer
functions, x;,(¢ +1)—1 for neuron 1, while x,;,(¢+1)—0
for the other neurons a >1 in the cluster. As y de-
creases, x;,(¢ +1) decreases from 1 but remains the larg-
est output in the cluster, while the other neuron outputs
increase from 0. Finally, in the limit ¥ —O0 of nearly flat
transfer functions, all neuron outputs approach the same
value x;,(t +1)—1/Q;. Thus, in this example, the com-
petitive constraint (2b) rations the quantity R; among the
Q; neuron outputs in the cluster according the size of
their inputs at each time step, with the neuron gain y
controlling how much is awarded to each neuron.
Competitive clusters are not limited to calculating the
analog winner-take-all function; the broad class of possi-
ble transfer functions allows a great variety in cluster
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functionality. A cluster can be configured to calculate an
analog k-winner function [44,48]—meaning that the neu-
rons with the k largest inputs have large outputs while
the other neurons are suppressed—by setting the con-
stant R; =k and giving each neuron the same sigmoidal
or S-shaped transfer function F(z)=[1
+exp(—yz)]~!. More complicated calculations are pos-
sible as well: for example, the number of winners can be
made to depend on which neurons have the largest inputs
by allowing some neurons to have exponential transfer
functions and others to have sigmoids.

In standard analog networks, the neuron gain, defined
as the steepest slope of a neuron transfer function, plays
an important role [20-28]. In competitive analog net-
works, the analogous quantity is the cluster gain, which
we will define precisely in Egs. (35) and (36) of Sec. IV.
The gain B; of a competitive cluster i is a measure of the
change in its neuron outputs in response to a change in
their inputs. The cluster gain is thus related to the slopes
of the neuron transfer functions; for example, rescaling
all transfer functions in a cluster by F,(z)—F,(cz)
changes the gain of that cluster by B; —cp;.

B. Competition in an analog electronic circuit

An attractive feature of the competitive mechanism de-
scribed above is that it can be easily implemented in a
variety of physical systems by using conservation laws to
enforce the competitive constraint (2). Competitive sys-
tems have been constructed using current conservation in
an electronic circuit [39-41] and gain conservation in a
laser resonator [42]. Here we describe a simple analog
electronic circuit that uses Kirchoff’s current law to im-
plement a Q-neuron analog winner-take-all cluster.

A schematic diagram of the circuit appears in Fig. 2.
Each neuron a, a=1,...,Q, consists of an r-channel
enhancement  metal-oxide-semiconductor field-effect
transistor (MOSFET) T,. The input of neuron a is the
gate voltage V, of transistor T,, and the output of neuron
a is the current I, flowing through transistor 7,. The

1, }
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FIG. 2. Schematic diagram of analog electronic circuit im-
plementing Q-neuron winner-take-all competitive cluster. Each
neuron @, a=1,...,Q, consists of an n-channel enhancement
MOSFET T,. Input of neuron a is gate voltage V, of transistor
T,; output of neuron a is current I, flowing through transistor
T,. Transistor sources are connected in parallel to a current
source I, and transistor drains are connected in parallel to volt-
age source V,. Kirchoff’s current law enforces competition by
constraining neuron outputs I, to sum to I,.
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sources of the transistors are connected to a current
source I, and their drains to a voltage source V. If the
transistors are operated in the subthreshold regime, the
current I, through transistor T, is [49]

I,=TIexp(yV,)|exp(—yV)—exp(—yV,)]
=Jexp[y(V,—V)]. )

In Eq. (7), I is a device-dependent parameter typically 1
nA to 1 uA, Vis the voltage of the common source line,
V, is the power supply voltage, and y =e /kz T=40 V"1,
where e is the electron charge, kg is Boltzmann’s con-
stant, and 7T is the temperature. The approximation
holds in Eq. (7) when ¥V, is much larger than V. The
voltage V of the common source line adjusts to make the
sum of the transistor currents equal the current through

(a)
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FIG. 3. Oscilloscope traces showing (a) transfer function of a
single analog electronic neuron, (b) competition in an electronic
circuit containing Q =3 neurons. In (b), input voltages (bottom)
and output currents (top) of the three neurons are shown. In-
puts of neurons 1 and 2 are held constant at 6 V while input to
neuron 3 is ramped between 5 and 7 V. Competition leads to
effectively sigmoidal response even though transfer function is
exponential.
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the current source, in accordance with Kirchoff’s current
law:

Q
> I1,=1,. (8)
a=1
Comparing Eqgs. (7) and (8) to Egs. (1) and (2) shows that
— V plays the role of the bias term B;, I, plays the role of
the constant R;, and Kirchoff’s current law enforces the
competitive constraint. Using Eq. (8) to eliminate V leads
to

exp(yV,)
R ©)

>, explyVy)
b=1

which is identical to the analog winner-take-all transfer
function (6).

We have constructed the circuit of Fig. 2 using Intersil
Model VN86HF MOSFET transistors, a 15-V voltage
source, and a standard op amp-based 75-mA current
source. The transfer function for a typical transistor
operating in the subthreshold regime is shown in Fig.
3(a). In Fig. 3(b), competitive behavior is shown in a
cluster of Q=3 transistors. The gate voltages and
currents (as measured by the voltage drop across a series
100-Q resistor) of each transistor are shown in the case
that the gates of transistors 1 and 2 are held at
V,=V,=6 V while the gate of transistor 3 is ramped be-
tween V;=5 and 7 V. When V;>6 V, transistor 3 has
the maximum gate voltage and wins the competition.
When V;<6 V, transistors 1 and 2 both have the max-
imum gate voltage; a mismatch in transistor characteris-
tics causes transistor 1 to win the competition. The cir-
cuit demonstrates that the competitive mechanism of
Egs. (1) and (2) can be implemented simply and robustly
in standard analog electronics.

III. COMPETITIVE NETWORKS

In this section, we discuss the dynamics of networks of
interacting competitive clusters. Section III A presents
update equations for networks with continuous-time up-
dating and discrete-time, parallel updating, and Sec. III B
discusses how these networks are related to networks of
Potts spins.

A. Network dynamics and interconnections

We consider networks of N interacting competitive
clusters labeled by i, i=1,...,N. The clusters may con-
tain different numbers Q; of neurons, so that the total
number N, of neurons is

New= 2 O - (10)

The neurons may have arbitrary transfer functions F,,(z)
subject to the conditions stated above. An example of
such a network is shown in Fig. 1(b).

The neurons are updated in parallel according to either
the N, coupled nonlinear differential equations
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dx,a(t) b
— = X))+ 2 2 x5 (1) + B () + 1, |,
dt j=16=1
i=1,...,N, a=1,...,0Q; (11a)
or the N, discrete-time equations
X, (t+1)= 2 2 ﬂ,(t )+B;(t)+1, |,
j=1b=1
i=1,...,N, a=1,...,Q; (11b)
with parallel update. The interconnection matrix J,‘j'b,

which couples the output of neuron b in cluster j to the
input of neuron a in cluster i, is assumed to be real valued
and to satisfy the symmetry condition

ab_ yba
Jp=Jh . (12)

The N biases B;(t) enforce the competitive constraint (2)
for each cluster The N, external biases I;, are time in-
dependent and may differ for each cluster i and neuron a.
We will refer to networks that obey Egs. (11) as competi-
tive networks.

Because the competitive constraint restricts the Q;
neuron outputs in cluster i to a space of dimension Q; —1,
the dynamical systems (11) lie in a space of dimension
N« —N. Thus, of the N, (N,,,+1)/2 independent ele-
ments of the symmetric matrix J,‘]”’, only
(Nt —N) N,y —N+1)/2 are necessary, and it is possi-
ble to impose up to Ny, =N(2N,,,—N+1)/2 con-
straints on the interconnections without altering a
network’s trajectories in state space [36]. One useful
choice of constraints is to require that, for N(N+1)/2

constants J =J s

2 J“b——— 2 J,-‘}b=J,-j . (13)
Qi /< 9 5=

Equation (13) constrains the eigenvectors of the intercon-
nection matrix either to lie in the same (N, —N)-
dimensional space as the dynamical systems (11) or else
to be orthogonal to this space. (The eigenvalues and
eigenvectors of the interconnection matrix, which has
four indices, are found by flattening it into an N, X N,
matrix with two indices.) A simple counting argument
shows that Eq. (13) imposes exactly N, constraints on
the interconnections. For the Q;Q; interconnections J;; ab
between two clusters ij, Eq. (13) imposes Q,+QJ—1
constraints (the number of independent column and row
sums of a Q; X Q; matrix). For the Q;(Q;+1)/2 indepen-
dent interconnections JZ° within a cluster i, Eq. (13) im-
poses Q; constraints (the number of independent column

and row sums of a Q; X Q; symmetric matrix). Thus the
total number of constraints is

N N N

2 2 (Q1+Qj—1)+ EQichonstr . (14)

i=1j>i=1 i=1

An arbitrary, symmetric interconnection matrix J,-?b can
be made to satisfy Eq. (13) by applying the symmetry-
preserving transformation

Q; Q;
Jab Jﬂb+J 1 2 er zj Jeos
Q —~ 17 . — 17
i r=1 J s=1
I (15)
Q Q] rgl szl Y

This transformation leaves the network dynamics (11) un-
changed if in addition each neuron transfer function
F,,(z) is shifted horizontally by an amount that depends
on i and a that we now derive. Applying (15) transforms
the neuron inputs hia(t) by

2 2 J3x i (8)+1,,
j=1b=1
N Qj 1 9; R.
-3 3 - o SIP| [xp— o
j=1b=1 Qi r=1 ’ % Qj
N
+ 2 J,]R] +1, . (16)
j=

Of the four new terms appearing on the right-hand side
of Eq. (16) as a result of the transformation, three are in-
dependent of a and so contribute the same bias to the in-
put of each neuron in cluster i, which is canceled by the
bias B;(¢). The other term does depend on a, and to can-
cel it the transfer function F,,(z) must be shifted:

F,(z)—F,
j=1b=1

z+ 2 EJ,‘}"Q ’ 17n
j

The freedom to choose the constants J;; can be useful in
hardware applications, since a well-chosen set of J;; can,
for example, reduce the number of interconnections or
make the interconnections all positive. In the rest of this
paper, we will assume that the transformation (15) has

been carried out with arbitrary values of J;;.

B. Competition and Potts networks

When competitive clusters are configured as analog
winner-take-all units, they can be viewed as a generaliza-
tion of Potts spins [31]. A Potts spin has Q real-valued
inputs and an output that takes on one of Q possible
discrete values; at each time step, the output state is
chosen to correspond with the largest input. In the limit
v — o, the analog winner-take-all competitive cluster
discussed in Sec. II reduces to a Potts spin. Moreover,
for finite y, the function appearing on the right-hand side
of Eq. (6) describes the thermally averaged state of a
Potts spin at temperature T=1/y, just as the hyperbolic
tangent function describes the thermally averaged state of
an Ising spin.

However, the analogy between gain in deterministic,
analog systems and temperature in stochastic, discrete-
state systems is not exact. The mean-field treatment of
finite-temperature Potts systems [50,51], like that of
finite-temperature Ising systems [52], yields a term
known as the reaction field acting on each spin. By
design, no reaction field appears in the update equations
(11) for competitive networks. These issues have been
discussed elsewhere [25,27,28,53].
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The computational abilities of networks of Potts spins
have been studied by a number of authors [32-37]. Com-
petitive clusters are considerably more general than Potts
spins because they are analog rather than digital and be-
cause they can calculate other functions of their inputs
besides the winner-take-all function.

IV. GLOBAL STABILITY ANALYSIS
OF COMPETITIVE NETWORKS

In this section, we use a Liapunov function approach
to analyze the dynamics of competitive networks. We
show that, for symmetric interconnection matrices and
the broad class of transfer functions described in Sec. II,
(i) the attractors of competitive networks with
continuous-time updating are fixed points; (ii) the attrac-
tors of competitive networks with discrete-time, parallel
updating are either fixed points or period-two limit cy-
cles; and (iii) period-two limit cycles are eliminated from
discrete-time networks, leaving only fixed-point attrac-
tors, when the cluster gains are sufficiently reduced as de-
scribed below. The analysis of discrete-time, parallel-
update networks follows that of Ref. [23].

A. Continuous-time updating

We first consider continuous-time competitive net-
works, whose time evolution is described by Eq. (13a),
and show that they have only fixed-point attractors. We
construct the function

N @ Qj

S 337

Xiq ()% (1)
ij=la=1b=1

N @
-2 2

i=la=1

L(t)=—4

N &
Lixi,(t)+ 3 3 Gi(x;,(2)), (18)

i=la=1

where G,,(x) is the integral of the transfer function in-
verse:

Gu(x)= [“F7l(z)dz . (19)
*o

The quantity x, is an arbitrary constant. The function
L (t) and similar functions have been used by a number of
authors to study the dynamics and stability of analog net-
works [20—-24]. We prove that L (¢) is a Liapunov func-
tion for continuous-time competitive networks by show-
ing (i) that the derivative of L (¢) with respect to time is
always less than or equal to zero, and (ii) that L (?) is
bounded below. Using the symmetry of the interconnec-
tion matrix, the time derivative is

N @
=3 3
i=la=1

dL(t) dx,(t)

0
2 ,,,(t)

]Mz

_Iia+Gi,a(xia(t))] , (20)

where G;,(x)=F; '(x) is the derivative of G, (x). The
first two terms in square brackets can be rewritten using
Eq. (13a), with the result
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dL( N o la(t) —1 dxia(t)
2 D~ |~ Fa |xa()+
—1la=1 dt
+F; \(x0(0)+B(2) | . 1)

The sum over the third term in square brackets in Eq.
(21) vanishes, since

% dxg) 4 R 22
dt  dt zx"‘ D= T 22)

a=1
Equation (21) may therefore be written
NS dx,(t)
dt

dL(t) _
dt

—F,

ia

+
xla(t) dt

dx;,(t) ‘

i=la=1

+F; Nx,(2)) (23)

As long as each transfer function increases monotonical-
ly, the quantity in square brackets in Eq. (23) always has
the opposite sign of dx,,(¢)/dt. Thus

dL(1) _
dt ~°

with equality holding only when dx,,(¢)/dt=0 for all
clusters i and neurons a, implying that the network has
reached a fixed-point attractor. Furthermore, because all
transfer functions in a cluster asymptotically increase less
than linearly either for large negative values of their ar-
guments or for large positive values of their arguments,
or for both, the third sum in Eq. (18) increases more than
quadratically when the neuron outputs are large in mag-
nitude. The third sum therefore dominates the other two
sums in L (z), which are quadratic and linear in the neu-
ron outputs, causing L (¢) to be bounded below. The re-
sult (24) and the boundedness of L (¢) imply that L (¢) is a
Liapunov function of continuous-time competitive net-
works: the networks seek out the local minima of L (¢) as
they evolve in time. Continuous-time competitive net-
works therefore have only fixed-point attractors.

(24)

B. Discrete-time, parallel updating

Competitive networks with discrete-time, parallel up-
dating, whose time evolution is given by Eq. (13b), may
have both fixed points and period-two limit cycles. To
prove this, we construct the function [20-24]

N Q,’ Qj
Eit)=—3 3 3 Jx,(t)x,(t—1)
Lj=la=1b=1
N @

=3 3 Lylxi,(t)+x,(—1)]

i=la=1

N &
+3 3 [Gig(xg(0))+Gipx;(r—1)], (25)
i=la=1
where G,,(x) is defined as in Eq. (19) and the time ¢ is
now discrete. We prove that E(¢) is a Liapunov function
for discrete-time, parallel-update competitive networks
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by showing (i) that the change in E(¢) between successive
time steps, AE(t)=E(t+1)—E(t), is a nonincreasing
function of time, and (ii) that E(¢) is bounded below. Us-
ing the update equation (13b) and the symmetry condi-
tion (12), AE(t) can be written as

N %
AE(t)=—3 3 Fg'(x;,(t+1)Ax;,(2)

i=la=1

N <
— 2 Bi(t) 3 Apx,,(2)

i=1 a=1

N %
+2 2 [Gia(xia(t+1))_

i=la=1

Gig(x,(z—1))],
(26)
where Ayx;,(t)=x;,(t+1)—x;,(t—1) is the change in

x;,(t) between two time steps. The second term in Eq.
(26) is identically zero, since

Q,‘ Qi Qi
> Apx, ()= S x,t+1)— 3 x,(t—1)
a=1 a=1 a=1
=R;—R;=0. (27)

Thus Eq. (26) becomes

N &
AE()=—T3 3 Fil(x;,(t+1))Ax;, (1)

i=la=1

Z

+3 S [Gulxglt+1)—

i=la=1

Gialx;a(t—1))] .

(28)

We now construct an upper bound for the contribution
from each cluster to the last term in Eq. (28). The upper
bound is

Q;

[

AL(t)=—1

iMe

1
2
Lj=la=1b=1 i=la=1

]Mz

N 9

- 2 B(1) 2 Ax(1)+ 3 3 [Gyulx,(t+1)—

i=1 a=1 i=la=1
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2
2 [Gia(xia(t+1))_Gia(xia(t_1))]
a=1
g
< S GL(x(t+1)Ax, (),  (29)
a=1

where G, (x) is the derivative of G;,(x). Equation (29),
which states that the Q;- dlmensxonal surface 3,G;,(x;,)
lies everywhere on or above its tangent planes, holds be-
cause the neuron transfer functions increase monotoni-
cally. Equation (29) is illustrated in Fig. 4 for a cluster of
Q,=2 neurons with transfer functions F;(z)=F;(z)
=exp(yz) and with R;=1. Figure 4(a) depicts the sur-
face G;;+G;,. The competitive constraint x;; +x,,=1 re-
stricts the possible values of G;,+ G, to the dashed curve
lying on the surface. Also shown is the tangent plane and
a tangent paraboloid (to be used below) at a particular
point (x;,x;,) such that x;; +x;,=1. Figure 4(b) is a de-
tailed view of the tangent plane and the dashed curve; the
left-hand side of Eq. (29) appears as the quantity A and
the right-hand side as the quantity B.

Combmlng Egs. (28) and (29) and using the result
G (x)=F; (x) leads to

AE(t)=0, (30)

where equality holds when A,x;,(¢)=0 for all i and g,
which implies that the network has reached either a
fixed-point or a period-two attractor. The result (30) and
the fact that E (¢), like L (z), is bounded below, together
prove that E(¢) is a Liapunov function of competitive
networks with discrete-time, parallel updating, and that
all attractors of these networks are either fixed points or
period-two limit cycles.

We now show that period-two limit cycle attractors
can be eliminated from discrete-time, parallel-update
competitive networks by reducing the cluster gains
sufficiently. We again consider the function L (¢) of Eq.
(18), only this time applied to the discrete-time, parallel-
update competitive network, and show that it is a
Liapunov function for this network when all cluster gains
are sufficiently small. We consider the change in L (¢) be-
tween successive time steps, AL(¢)=L(¢+1)—L(¢t). Us-
ing the update equation and the symmetry of the inter-
connection matrix, AL(t) can be written

N 9
S TAx, (DAx ()= 3 S Fip M (1 +1))Ax;, (1)

Gia(xia(t))] ’ €3Y)
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FIG. 4. Illustration of inequalities (29) and (33) for an analog
winner-take-all cluster i containing Q; =2 neurons with transfer
functions F;(z)=F;,(z)=exp(z) and R;=1. (a) The surface
G;\(x;;)+G;(x;,) as a function of neuron outputs x;; and x;,.
Competition constrains the system to dashed curve lying on sur-
face. Also shown are the tangent plane and a tangent para-
boloid at a particular point (x;,x;,). Parabola curvature 1/p3;
equals greatest curvature of dashed curve. (b) Detail of tangent
plane. Equation (29) is represented by the inequality 4 <B. (c)
Detail of tangent parabola. Equation (33) is represented by the
inequality 4 <C.

where Ax;, (t)=x,(t+1)—x;,(¢) is the change in x;, be-
tween consecutive time steps. As in Eq. (27), the third
term on the right-hand side of (31) is zero, so that

N 2 9
1> > EJ“be (2)Ax (1)

,j—la=1b—1
N @

AL(t)=

F U, (t+1)Ax;,(2)
i=la=1
N @

+ 3 3 [Giulx,(t+1)—

i=la=1

Gulx(tN]. (32

We now construct an inequality relating the last term in
Eq. (32) to Ax;,(¢). This inequality is similar to (29) but
includes a term quadratic in Ax;,(¢):

9

2 [Gilx(t+1))—

a=1

Gia(xia(t))]

9
=S Gilx,(t+1))Ax,,(2) 2 (Ax;, (t)*.
a=1 2/3 I a=1
(33)
The quantity S; is the gain of cluster i. We define the
cluster gain to be the smallest number S3; such that the in-
equality

1 Q; Q;
— 3 (Ax, ()’ 3 G (x

i (Ax, (2))?, (34)
Bi a=1 a=1

where G;(x) is the second derivative of G,(x), is
satisfied for any possible values of x,,(¢) and Ax,,(¢) sub-
ject to the competitive constraint (2b). Note that, if there
were no constraints on x,,(¢) and Ax,,(¢),; would equal
the steepest slope among all the transfer functions in clus-
ter i. However, because competition constrains the sums
of x;,(t) and Ax;,(¢) in each cluster to equal R; and zero,
respectively, B; takes on a value less than or equal to the
steepest slope. This value is given by

2 dF;; \(z)

(z,0€, 2‘, € - (35)

1
—— =min

B

The minimization in (35) is over the dummy variables z,
and €,,a=1,...,0;, subject to the constraints

Z—Za

2
> e=1, (36)

and to the restriction that each z, lie in the range of the
transfer function F;,(z). In cases for which the minimi-
zation (35) is difficulty to carry out, a useful upper bound
for B3; is the steepest slope of any of the transfer functions
F,(z),a=1,...,Q;, over the range to which the com-
petitive constraint (2b) restricts them. For clusters in
which R;=1 and all neurons have the exponential
transfer function of Eq. (5), Egs. (35) and (36) give the re-
sult =7 /2 independent of Q;.

The inequality (33) and the geometrical meaning of the
cluster gain can be understood by referring again to Fig.
4. The tangent paraboloid in Fig. 4(a) has curvature
1/B;. The minimization procedure of Egs. (35) and (36)
sets 3; equal to the greatest curvature of the dashed curve
lying on the surface G; +G;, (recall that competition
constrains the system to the dashed curve). Thus the
dashed curve lies everywhere on or above the paraboloid
when the paraboloid is tangent to it. Figure 4(c) is a de-
tailed view of the tangent paraboloid and the dashed
curve; the left-hand side of Eq. (33) appears as the quanti-
ty A and the right-hand side as the quantity C. For a
general cluster i, fB; is the greatest curvature of the
(Q; —1)-dimensional region of the surface ¥ ,G;,(x;,) to
which the neurons of the cluster are restricted. The vec-
tor z, and the unit vector €, produced by the minimiza-
tion (35) indicate, respectively, the location and the direc-
tion of the curvature S3;.

Equations (32) and (33) and the result G;(x)=F; '(x)
lead to

N 9% 9 1
AL()=—1 3 ¥ J:jzb+8ij80bﬁ ]
ij=la=1b=1 i
X Ax,(£)Ax (), (37

where §;;=1 for i=j and O otherwise. If the matrix
MP=(J5+8,;8,,B; ") is positive definite, then the in-
equality

AL(t)<0 (38)
is satisfied. Equality holds in (38) only when Ax,,(¢)=0,
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implying that the network has reached a fixed-point at-
tractor. The requirement that M;}” be positive definite
leads to the stability criterion

Bii> —Amins [=1,...
where A, is the smallest or most negative eigenvalue of
the interconnection matrix J, ,-‘}b, and f3; is the gain of clus-
ter i. Equation (38) and the boundedness of L (¢) prove
that, when the cluster gains satisfy (39), L(¢) is a
Liapunov function of discrete-time, parallel-update com-
petitive networks and the only attractors are fixed points.
Thus networks with interconnection matrices for which
Amin= 0 do not have period-two limit cycles, while those
with interconnection matrices for which A,;, <O can
have period-two limit cycles if anyone of the cluster gains
exceeds 1/|Ap,l.

The stability results derived above serve as guidelines
for designing competitive networks that compute by re-
laxing to fixed-point attractors. Specifically, continuous-
time networks are guaranteed to converge only to fixed
points, while discrete-time, parallel-update networks con-
verge only to fixed points when the cluster gains are
chosen to satisfy the stability criterion (39). In the next
section, we will apply the stability criterion to discrete-
time, parallel-update networks that use fixed-point com-
putation to perform image processing tasks. We will see
that the stability criterion provides a reliable upper limit
on the cluster gain when convergence to fixed points is
desired.

N, (39

V. TWO-DIMENSIONAL COMPETITIVE NETWORKS
FOR IMAGE PROCESSING

In this section, we demonstrate how competition can
lead to desirable computational abilities in a specific ap-
plication. The application we investigate, depicted
schematically in Fig. 5, is a two-dimensional network in
which competitive clusters detect and classify localized
features in a visual scene. We show analytically how the
stability criterion depends on interconnection matrix pa-
rameters such as local connectivity, and we present nu-
merical data supporting these results. The main point is
to demonstrate that competitive networks are well suited
for solving feature-extraction and pattern-classification
problems.

Two-dimensional neural networks are useful in
artificial vision applications because they allow efficient
mapping of an image onto a network and because they
are well suited for implementation in very-large-scale in-
tegrated circuits. Competition can be employed in two-
dimensional image-processing networks in several ways.
A competitive cluster can be assigned to each image pixel
to extract information that can be categorized into
discrete classes, such as color, depth, or gray-scale inten-
sity. Competitive clusters can also be assigned to pixel
groups to extract and classify image features locally, as in
the neocognitron [30], and to communicate information
about these features, rather than about individual pixels,
to nearby image regions. In this latter case, depicted in
Fig. 5, each neuron represents a different feature, such as
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FIG. 5. Two-dimensional competitive network for image
processing. Open circles denote neurons; lines denote sym-
metric neuron interconnections; dashed ellipses delineate clus-
ters of competing neurons. Neurons receive input from a local-
ized region of a two-dimensional pixel array and communicate
through interconnection matrix (40) with neurons in neighbor-
ing clusters on a square lattice. For clarity only some of pixel
array inputs are shown. All clusters have same number Q of
neurons, same transfer functions F,(z), a=1,...,Q, and same
value R of the constant appearing in the competitive constraint
(2).

an edge, corner, texture, or other image primitive. Neu-
rons receive as input a weighted average of the pixel
values in a localized image region. The weights, which
encode the different features, can be chosen by hand or
learned through a supervised perceptron learning rule or
an unsupervised competitive learning rule [12-15].

We consider two-dimensional competitive networks
configured to recognize image regions where similar
features occur. In these networks, spatial domains of
neuron activity form that correspond to regions of simi-
lar color, depth, or texture in the image. A competitive
cluster is located at each of the N vertices of a square lat-
tice. The clusters are identical in that they have the same
number Q;=Q of neurons, the same neuron transfer
functions F;,(z)=F,(z), and the same value R; =R of the
constant appearing in the competitive constraint. Thus
each cluster has the same cluster gain . The intercon-
nection matrix is constructed so that neuron a of a given
cluster communicates through an excitatory connection
with neuron a in the z clusters nearest to it; the cases
z=4, 8, and 12 are shown in Fig. 6. In addition, each
neuron can have a self-coupling connection.

The interconnection matrix is written as

08, /|lo|+z) ifi=j
J;}”= 8, /(lo|+z) if i,j neighbors (40)
0 otherwise .
In (40), z is the connectivity, or number of neighboring
clusters in a neighborhood, and ¢ determines the

strength of the self-connection relative to the other con-
nections. This interconnection scheme satisfies the con-
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FIG. 6.
square lattice, with (a) z=4, (b) z=38, and (c) z=12 neighboring
clusters. Circles denote neurons, dashed ellipses denote clus-
ters, and heavy lines schematically denote symmetric intercon-
nections among all neurons within the clusters they connect.
Each cluster has identical interconnections; for clarity, only
those for one cluster are shown.

Interconnection schemes on a two-dimensional

straints (13) with

o/llo|+z) ifi=j
1/(lo|+z) if i,j neighbors 41)
0 otherwise .

Jij=

Note that allowing the constants J;; to be nonzero
reduces wiring requirements by eliminating connections
between neurons with @b, i.e., neurons representing
different features in neighboring clusters.

As an example of how these networks perform, Fig. 7
shows a fixed-point attractor of a network containing
N =40X40=1600 competitive clusters with connectivity
z=4. All clusters implement the analog winner-take-all
function with Q =4 neurons per cluster, R =1, and neu-
ron transfer functions given by Eq. (5). The network has
wrap-around boundary conditions. Figure 7 was generat-
ed by starting the network from random initial conditions
x;,(0)=8,,, where each b;, i=1,...,N, is an integer

chosen randomly and without bias from the set
{1,...,0}, and iterating Eq. (11b) until convergence to
an attractor. The fixed point shows how neurons
representing the same feature tend to form domains in a
way that can be useful in image processing. Domain size
can be regulated by the neuron gain y; the average
domain size shrinks as gain increases [8—10].

The eigenvalue spectra of the interconnection matrices
in Eq. (40) can be calculated using standard techniques
for finding classical phonon dispersion spectra [54]. In
the limit of large N, the minimum eigenvalues are [55]

—1
4 - 9—4 k(s)__Z:‘L 3

min 5|44 0 TminT (5 4

(12) —
m o412

(42)
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FIG. 7. Fixed point attractor of a two-dimensional competi-
tive network, showing how neurons representing the same
feature tend to form domains in a way that can be useful in
image-processing applications. Each square represents one clus-
ter; side length is proportional to output of winning neuron, and
shading indicates which of the neurons in each cluster wins.
Network has N =40X40=1600 analog winner-take-all clusters
with Q=4 neurons per cluster, transfer functions
F(z)=exp(yz), and R=1. Cluster gain is =20, self-coupling
is 0=1, and connectivity is z=8. Boundary conditions are
wrap-around.

where the superscript in parentheses indicates the num-
ber z of neighbors for the lattices of Fig. 6. Note that the
minimum eigenvalues are independent of Q. These
minimum eigenvalues are used in Fig. 8 to show how the
stability criterion (39) depends on the cluster gain 8 and
neuron self-connection o for the cases z=4, 8, and 12.

4

2+
G -

0

2L z=4 —0— | |

z=8 —t—
B z=12 —o— | ]

-4 V= S

10 100

B

FIG. 8. Stability criterion (39) for two-dimensional competi-
tive networks with self-coupling o and cluster gain S8 for various
values of connectivity z. Stability criterion is violated to right of
each curve. Curves are independent of the number Q of neu-
rons in each cluster.

—
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For each value of cluster gain, the curves in Fig. 8 give
the value of o for which 1/8=—A_;,. The curves are in-
dependent of the number Q of neurons per cluster and of
the particular form of the neuron transfer functions
F,(z).

Numerical tests carried out on computer-generated
two-dimensional competitive networks indicate that limit
cycles often do not appear until the cluster gain is some-
what higher than the value given by the stability cri-
terion. The reason is that Egs. (35) and (36) define cluster
gain as the greatest curvature at one point and in one
direction on a many-dimensional surface, and the trajec-
tories of a particular network may not pass through that
point in that direction. This is in contrast to standard
analog networks, in which neurons experience the high-
gain regions of their transfer functions because the func-
tions are one dimensional.

We illustrate this point by considering two-dimensional
competitive networks with z=4 and with analog winner-
take-all clusters at each lattice site. The clusters have
R =1 and neuron transfer functions given by Eq. (5), so
that the cluster gain is S=7v /2. The eigenvector associ-
ated with A, and hence the structure of the first
period-two limit cycle to appear as cluster gain is in-
creased, are known [55]. The limit cycle consists of two
neurons (neurons 1 and 2, for example) in each cluster
that alternately oscillate between outputs x; and x,,
while the (Q —2) other neurons have constant outputs
x3. Spatially, the limit cycle has a checkerboard pattern,
as shown in the inset of Fig. 9: when neurons 1 and 2 in
cluster i have outputs x; and x,, neurons 1 and 2 in the

4 : ,
| stability B
criterion
2 - 4
o F _
0
0=3 —0—
2 0=4 —— |4
0=5 —o—
L o=7 —0— |4
Q0=10 —8—
4 Ll e
1 10 100

B

FIG. 9. Comparison of stability criterion with gain at which
period-two limit cycles appear for two-dimensional competitive
networks with connectivity z=4. Heavy curve shows the stabil-
ity criterion (39). Light curves show, for various values of Q,
gain at which period-two limit cycle given by Egs. (43) and (44)
first appears in networks in which F(z)=exp(yz) and R=1,
with cluster gain B=17 /2. Inset depicts limit cycle structure us-
ing same scheme as in Fig. 7. When neurons 1 and 2 in cluster i
have outputs x, and x,, neurons 1 and 2 in the four nearest-
neighbor clusters have outputs x, and x,.
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four nearest-neighbor clusters have outputs x, and x;. If
such a limit cycle exists at given values of the neuron gain
v and the self-connection o, its values of x|, x,, and x4
are

_ f1
T A Qo2f
_ fa
x2““ ’
fi1+foH(Q—2)f,
(43)
e f3
YL+ Q=)
where
fi=exp[y(ox,+4x,)/(lo|+4)],
fr=exp[y(ox,+4x,)/(|lo|+4)],
(44)

fi=explylox;+4x;)/(lo]|+4)] .

In Fig. 9, we compare the stability criterion with the
value of gain at which the period-two limit cycle given by
Eqgs. (43) and (44) first appears for various values of Q.
For o % 3, the limit cycle appears as soon as the stability
criterion is violated, while for o <3, it appears at Q-
dependent values of gain that are larger than the gain at
which the stability criterion is violated. We emphasize
that this analysis improves upon the stability criterion at
the expense of generality: Eqgs. (43) and (44) depend on
the particular form of the neuron transfer functions and
on the structure of the limit cycle corresponding to A .,
while the stability criterion (39) depends only on the clus-
ter gain and on A_;,. In general, the limit cycle structure
may not be known, and Eq. (39) provides a simple and re-
liable criterion guaranteeing convergence to a fixed point.

VI. SUMMARY

If neural-network implementations are to become pre-
valent, it is likely that network architectures will need to
reflect the underlying structure of the problems they are
to solve. In this paper, we have introduced a network ar-
chitecture in which analog neurons compete within local-
ized clusters. Local competition makes these networks
particularly well suited for tasks such as feature extrac-
tion and pattern classification. Using a global stability
analysis, we have shown that these networks converge
only to fixed points with continuous-time updating and to
either fixed points or period-two limit cycles with
discrete-time, parallel updating. Furthermore, we have
provided a stability criterion that guarantees convergence
of discrete-time, parallel-update networks to fixed points
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when the cluster gain is sufficiently reduced. We have
discussed how clusters of competing neurons can be used
in image processing applications, and we have shown
through numerical tests that such networks operate reli-
ably and in accordance with the stability criterion. We
have also constructed a simple analog electronic circuit
to demonstrate that these networks are easily implement-
able.
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FIG. 7. Fixed point attractor of a two-dimensional competi-
tive network, showing how neurons representing the same
feature tend to form domains in a way that can be useful in
image-processing applications. Each square represents one clus-
ter; side length is proportional to output of winning neuron, and
shading indicates which of the neurons in each cluster wins.
Network has N =40X40=1600 analog winner-take-all clusters
with Q=4 neurons per cluster, transfer functions
F(z)=exp(yz), and R=1. Cluster gain is =20, self-coupling
is =1, and connectivity is z=8. Boundary conditions are
wrap-around.



